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Abstract ration of diffuse and specular reflections [10, 35]. These

Inverse rendering aims to reconstruct geometry and re-
flectance from captured images. Display-camera imaging
systems offer unique advantages for this task: each pixel
can easily function as a programmable point light source,
and the polarized light emitted by LCD displays facilitates
diffuse-specular separation. Despite these benefits, there
is currently no public real-world dataset captured using
display-camera systems, unlike other setups such as light
stages. This absence hinders the development and evalu-
ation of display-based inverse rendering methods. In this
paper, we introduce the first real-world dataset for display-
based inverse rendering. To achieve this, we construct and
calibrate an imaging system comprising an LCD display
and stereo polarization cameras. We then capture a diverse
set of objects with diverse geometry and reflectance under
one-light-at-a-time (OLAT) display patterns. We also pro-
vide high-quality ground-truth geometry. Our dataset en-
ables the synthesis of captured images under arbitrary dis-
play patterns and different noise levels. Using this dataset,
we evaluate the performance of existing photometric stereo
and inverse rendering methods, and provide a simple, yet ef-
fective baseline for display inverse rendering, outperform-
ing state-of-the-art inverse rendering methods.

1. Introduction

Inverse rendering is a long-standing problem in computer
vision and graphics, aiming to recover scene properties such
as geometry and reflectance from captured images [36, 54].
Recent progress in inverse rendering methods heavily rely
on datasets that provide images of objects under well-
characterized multiple lighting conditions [5, 11, 59], al-
lowing for evaluation and training of models that infer ge-
ometry and reflectance from images.

Among various inverse rendering setups, display-camera
imaging systems offer unique advantages. Unlike conven-
tional light stages [18, 32, 50, 62], displays can serve as
high-resolution, programmable light sources, allowing con-
venient control over illumination [1, 78]. Moreover, LCD
displays emit polarized light, which facilitates the sepa-

characteristics make display-camera systems a compelling
choice for inverse rendering research. However, despite
their potential, the lack of publicly available datasets cap-
tured using such systems has hindered progress in this direc-
tion. Unlike other setups, such as light stages, which have
been extensively used for photometric stereo and reflectance
capture, display-camera inverse rendering lacks a standard-
ized benchmark for method development and comparison.
In this paper, we introduce the first real-world dataset

for display-based inverse rendering. We construct a display-
camera imaging system consisting of a LCD monitor and
a stereo polarization camera setup, enabling controlled il-
lumination capture at two views with diffuse and specu-
lar separation. Using this system, we capture a diverse set
of objects with varying geometries and reflectance prop-
erties under one-light-at-a-time (OLAT) display patterns.
Each object is accompanied by ground-truth geometry ob-
tained via structured-light scanning, enabling precise eval-
uation of inverse rendering methods. Our dataset also sup-
ports synthetic relighting and noise simulation, allowing re-
searchers to generate novel lighting conditions using linear
combinations of captured images. We also introduce a sim-
ple baseline method for display inverse rendering that effec-
tively addresses associated challenges, outperforming pre-
vious methods. Our specific contributions are as follows:

* We build and calibrate a display-camera imaging system
incorporating display backlight, which enables display-
based illumination and stereo polarization imaging.

* We acquire the first high-quality real-world dataset for
display-camera inverse rendering, featuring objects with
diverse reflectance and ground-truth geometry.

* We evaluate existing photometric stereo and inverse ren-
dering methods on our dataset, highlighting the chal-
lenges of display inverse rendering.

* We propose a simple yet effective baseline for display in-
verse rendering, outperforming previous methods.

2. Related Work

Imaging Systems for Inverse Rendering Inverse render-
ing typically requires observations of a target object under
various lighting conditions. In the literature, different hard-



ware configurations to modulate lighting conditions have
been proposed. Light stages, a dome structure equipped
with numerous high brightness LEDs, offer dense light-
view angular samples for high-quality inverse rendering
at the cost of large form factors and high instrumentation
costs [18, 32, 50, 62]. Flash photography with mobile cam-
eras provides a practical multi-view, multi-light setup, cap-
turing many images from different views [3, 15, 23, 52, 56].
However, this requires moving the cameras and captur-
ing objects multiple times. Using displays as controllable
light sources provides a cost-effective and compact al-
ternative, enabling convenient multi-light capture, having
a potential for practical and high-quality inverse render-
ing [1, 10, 35, 78]. Display-camera systems present unique
challenges and opportunities due to near-field lighting ef-
fects, limited light power, polarization properties of LCDs,
and constrained light-view angular sampling. Addressing
these challenges is an open problem.

Inverse Rendering Dataset Table | summarizes repre-
sentative publicly available datasets for inverse rendering.
While synthetic datasets provide ground truth under ideal
scenarios [8, 24, 26], real-world datasets offer environments
for realistic evaluation. Existing real-world datasets are cap-
tured with various imaging systems such as commodity
cameras [19, 33, 57], light probes [34], gantries [20, 55,
66], robots [29, 65], and light stages [7, 47, 72]. Despite
the increasing availability of real-world datasets, existing
datasets fail to comprehensively evaluate inverse rendering
in display-camera settings due to the use of other imag-
ing systems for data acquisition. Recently, Choi et al. [10]
employs 3D-printed objects for display photometric stereo.
However, the 3D-printed dataset has limited material di-
versity, unsuitable as an inverse rendering dataset for real-
world diverse objects.

Inverse Rendering Methods Learning-based inverse-
rendering methods utilize CNN [6, 40, 41, 60, 63, 68, 69,
74], RNN [44], transformers [27, 82], and diffusion mod-
els [9, 16, 21, 42, 46, 49, 61] to infer geometry and re-
flectance in a data-driven manner. In contrast, analysis-
by-synthesis methods take a physics-based approach, iter-
atively optimizing geometry and reflectance, ensuring that
rendered images match the input images via differentiable
forward rendering. Various differentiable rendering tech-
niques have been explored, including volumetric render-
ing [48, 67,73,75-717,79, 80], spherical Gaussians [76, 80],
tensor-based formulations [31], point-based rendering [11],
and Gaussian-based representations [5, 12, 17, 30, 43], and
image-based neural representations [37]. Inverse rendering
for display-camera systems introduces unique challenges
and benefits for reconstruction methods due to near-field
lighting conditions, display backlight, low signal-to-noise

Table 1. Real-world inverse rendering datasets. We present
the first dataset for display inverse rendering with calibrated dis-
play and stereo polarization cameras. We also provide high-quality
ground-truth geometry.

Illumination |Illumination | Ground-truth o
Dataset Polarization
system type geometry
Alldrin et al. [2] | Light rig Far-field X X
Grosse et al. [19]| Light rig Far-field X X
Xiongetal. [71] | Lightrig Far-field X X
Jensen et al. [29] | Lightrig Far-field X
Shi et al. [64] Light rig Far-field X
Lietal. [39] Light rig Far-field X
Meccaetal. [51]| Lightrig | Near-field X
Chabert et al. [7] | Light stage | Far-field X X
Liuetal. [47] | Lightstage | Far-field X X
Yang et al. [72] | Light stage | Far-field Pseudo
Toschi et al. [65] Gantry Far-field X X
Kuang et al. [33] | In-the-wild | Env. map X X
Kuang et al. [34] | In-the-wild | Env. map X

Ours ‘LCD display‘ Near-field

ratios, LCD polarization effects, and non-uniform angular
sampling [1, 35, 78]. Developing reconstruction methods
for display inverse rendering remains for future research.

3. Display-camera Imaging System

Setup To acquire a real-world dataset for display inverse
rendering, we built a display-camera system, shown in Fig-
ure 1(a). Our setup consists of an LCD monitor (Sam-
sung Odyssey Ark) and stereo polarization RGB cameras
(FLIR BFS-U3-51S5PC-C) equipped with 8 mm focal-
length lenses, covering 30° field of view. The LCD monitor
emits vertically polarized light based on the principles of
LCD [22]. The monitor maximum brightness is 600 cd/ m2,
and each pixel only outputs a maximum intensity of 0.06
mcd, which is too dim to capture even with maximum-
exposure imaging. Following [10], we parameterize display
pixels using 144 = 16 x 9 superpixels, where each super-
pixel consists of 240 x 240 display pixels. Thus, we repre-
sent the display pattern as £ = {Ly, ..., Ly}, where each
superpixel has an RGB intensity L;, and N denotes the total
number of superpixels. The polarization RGB cameras cap-
ture the linearly-polarized light intensity for the R, G, and
B channels at 0°, 45°, 90°, and 135°[4].

Display Backlight and Nonlinearity LCDs often cannot
achieve complete darkness even when set to a black value
as shown in Figure 1(b). Modeling this backlight is crucial,
as backlight from all display pixels becomes visible in the
captured images. Also, the display intensity is nonlinearly
mapped to the value to set, which should be also calibrated.
Taking these into account, we model the i-th display super-
pixel light intensity given the corresponding RGB pattern
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Figure 1. Display-camera imaging system. (a) Our imaging sys-
tem consists of an LCD monitor and stereo polarization cam-
eras. (b) The LCD monitor exhibits spatially-varying backlight as
shown in one of the OLAT images, which (c) we calibrate for ac-
curate inverse rendering. (d) We also obtain the non-linearity of
the monitor intensity.

value we set to display P; as
L; = s(P; + B;)7, (D

where s is a global scalar, y is the non-linear mapping ex-
ponent, and B; is the corresponding spatially-varying back-
light intensity. To calibrate s, B;, and -, we captured a
spherical object with known geometry and reflectance un-
der OLAT patterns, and optimize the three parameters with
a loss that minimizes the difference between the OLAT cap-
tured images and rendered OLAT images. Figure 1(c) shows
the calibrated spatially-varying backlight that resembles the
visible backlight in Figure 1(b).

Geometric Calibration We calibrate the stereo-camera
intrinsic and extrinsic parameters using the checkerboard
method [81]. We then estimate the position of each dis-
play superpixel relative to the reference left camera using
the mirror-based checkerboard method [10].

Image Formation When illuminating a scene point with
a display pattern £, the captured intensity by a camera is
modeled as:

N L.
I = clip <Z(n ) f(i, o)d—; + e) , 2)
i=1 1

where f is the BRDF, n is the surface normal, i is the in-
cident light direction from the i-th display superpixel, o

is the outgoing view vector, and d; is the distance from
the ¢-th display superpixel to the scene point. The function
clip(+) applies clipping to the camera dynamic range, and €
is Gaussian noise.

4. Display Inverse Rendering Dataset

Figure 2 shows our real-world dataset for display in-
verse rendering. Each object has corresponding stereo-
polarization RGB images captured under OLAT patterns,
ground-truth depth maps, normal maps, and object masks.

Objects We captured 16 objects made of various materi-
als and reflectances from diffuse to specular: resin (FROG,
PI1G, GNOME, SNOWMAN), ceramic (OWL, OBJET), metal-
lic paint (CAT, ROBOT, NEFERTITI), wood (CHICKEN),
clay (GIRL, BOY), plastic (TREX), bronze (HORSE), plaster
(PLASTER), and composite (ELEPHANT). In terms of shape,
the objects range from those with simple forms (OWL,
CAT, P1G, OBJET, CHICKEN) to those featuring tiny parts
(NEFERTITI), thin structures (HORSE, SNOWMAN), com-
plex details (ELEPHANT, TREX) and curvature (PLASTER),
as well as concave parts (FROG, GIRL, BOYy, GNOME,
RoBOT). The object sizes range from 8§ cm to 25 cm. Ob-
jects are placed at 50 cm from the cameras for the capture.

Ground-truth Geometry To obtain ground-truth object
shapes, we use structured-light scanning with a high-
precision 3D scanner (EinScan SP V2), with a precision tol-
erance of 0.05 mm. We align the scanned 3D meshes to the
captured images using the mutual information method [14].
Subsequently, we render depth maps, normal maps, and ob-
ject masks for the camera views on Mitsuba3 [28].

Polarimetric Image Processing We first convert the
captured polarization images at 0°, 45°, 90°, and 135°
as {Ig}geqo°,45°,00°,1350} into linear-polarization Stokes-
vector RGB images [13]:

_ R
2

S0 ,81 = loo — Igge, 82 = Iy50 — I1350.  (3)
Specular reflection tends to maintain the polarization state
of display light whereas diffuse reflection becomes mostly
unpolarized [10]. This enables us to obtain specular and dif-

fuse images as Lpecutar = +/(51)% + (52)? and Lgiftuse =

80 — Ispecular> respectively, which are shown in Figure 2.
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Figure 2. Display Inverse Rendering Dataset. We introduce the first display inverse rendering dataset. We obtain (a) combined, (b) diffuse,
and (c) specular stereo images captured under (f=h) OLAT patterns. We provide ground-truth (d) normal maps and (e) depth maps.
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Figure 3. Light-view angular samples. Our display-camera sys-
tem captures limited light-view angular samples. (a)&(b) For a
segmented scene, (d) we show the sample plots of four segments
in 64, 05, Rusinkiewicz space [58]. (c) The sampled region corre-
sponds to the typical specular, diffuse, and grazing reflections [53],
allowing for inverse rendering.

Light-view Angular Samples Display inverse rendering
poses challenges due to the limited coverage of light-view
angular samples. In Figure 3, we examine the angular
distribution of light-view samples for the segmented four
material components. While a full BRDF requires sam-
pling across all Rusinkiewicz coordinates [58], the display-
camera setup provides only partial coverage, particularly
in terms of 6,4, the angle between the half-way vector and
the illumination vector. However, it is worth noting that the
half-way angle 6}, is well-covered from 0 to 7/2, enabling
effective sampling of the specular lobe. Additionally, the
sampled region corresponds to both diffuse and specular
reflections[53]—a key factor that makes inverse rendering
feasible.

Simulation for an Arbitrary Display Pattern Leverag-
ing the linearity of incoherent light transport, we simulate
a scene illuminated by an arbitrary display pattern P =
{P1,---, Py}, using Equation (2) and Equation (1), as:

N
I(P) = clip (Z Lis(P; + B;)" + 6) ) )
i=1

where P; is the display superpixel RGB value, I; is the cap-
tured image under the ¢-th OLAT illumination. The standard

deviation of the Gaussian noise e can be adjusted to reflect
different noise levels.

5. A Baseline for Display Inverse Rendering

We propose a simple yet effective baseline for display in-
verse rendering, designed to handle inputs captured under
M arbitrary display patterns, Py, - - - , Pas. As an initializa-
tion step, we estimate the normal map using the analytical
RGB photometric stereo method [10], which leverages M
captured images. Additionally, we estimate a depth map by
using the averaged stereo images across multiple patterns
as inputs to RAFT stereo [45]. Given these normal map
and depth map, we optimize the normal map and the re-
flectance (diffuse albedo, specular albedo, and roughness)
of the Cook-Torrance BRDF model. To address the limita-
tions of light-view angular sampling in the display-camera
system, we adopt the basis BRDF representation, which
models spatially varying BRDFs as a weighted sum of basis
BRDFs [11, 12, 37]. Specifically, we use the analytic Cook-
Torrance model to define each basis BRDF. We then differ-
entiably render reference-view images for the display pat-
terns Py, - -+ , Pas by implementing Equation 2 in PyTorch
and iteratively update the scene representation—comprising
normals, basis BRDFs, and their weight maps—by mini-
mizing the RMSE error between the rendered and input im-
ages. Despite challenges such as limited light-view angu-
lar samples, display backlight, and near-field lighting in the
display-camera setup, our baseline approach enables effec-
tive inverse rendering in only 150 seconds.

6. Evaluation

We assess previous photometric stereo methods, inverse
rendering approaches, and our proposed baseline method
(Section 5) using our display-camera dataset.

Photometric Stereo using OLAT Patterns Photomet-
ric stereo is a subtask of inverse rendering that focuses
on normal reconstruction. We evaluate both calibrated [8,
25, 37, 70] and uncalibrated [26, 27, 38] methods on our
dataset. As shown in Table 2 and Figure 4, recent uncal-
ibrated photometric stereo techniques—particularly SDM-
UniPS [27]—demonstrate highly accurate normal estima-
tion. This indicates that the 144 OLAT images in our dis-
play setup provide sufficient information for precise normal
reconstruction.

Inverse Rendering using OLAT Patterns Many exist-
ing inverse rendering methods cannot be directly applied to
the display inverse rendering configuration due to the in-
herent challenges such as limited light-view angular sam-
ples, backlight, and near-field effects. To evaluate perfor-
mance in this setting, we test four available inverse ren-



‘ ELEPHANT OWL CAT FrROG RoOBOT P16 CHICKEN GIRL BoOYy NEFERTITI TREX GNOME HORSE SNOWMAN PLASTER OBJET
Woodham [70] 27.02 26.60 21.05 21.58 2818 17.02 18.39 24.86 21.44 37.03 18.98 19.83 19.27 3221 19.56 17.28
PS-FCN [8] 20.26 15.17 10.61 19.15 16.68 15.80 11.91 2596 2227 20.03 18.22 19.33 17.48 18.75 17.25 7.73
PS-Transformer [25] 26.42 3643 21.11 3534 2731 49.10 16.20 38.66 3591 30.64 29.86  36.53 35.06 54.26 33.97 24.06
SRSH [37] 26.21 1849 1695 2342 19.09 3276 17.88 37.14  31.19 23.97 25.05 27.44 27.70 27.96 26.93 21.87
SCPS-NIR [38] 22.75 793 897 1628 1787 34.89 10.43 4512 37.18 52.97 21.85 16.64 48.98 15.65 21.30 7.94
UniPS [26] 25.14 17.34  19.69 24.09 22.03 2577 2294 26.06 30.00 28.55 21.64 2432 27.24 18.86 19.70 15.90
UniPS [26] (M=64) 24.93 18.33 19.54 2499 22.18 2572 23.07 26.38 30.65 28.71 21.86 2448 26.72 18.89 19.43 16.39
SDM-UniPS [27] (M=64) 18.83 1437 970 1412 1485 1533 16.05 1499 15.22 2273 1458  13.46 16.93 15.18 12.55 9.38
SDM-UniPS [27] (M=10) 20.53 1277 943 1523 1648 16.12 16.10 1523 17.25 24.32 1536 1547 17.62 16.57 13.39 9.58

Table 2. Photometric-stereo evaluation using OLAT patterns. Normal reconstruction error in Mean Angular Error (MAE) for calibrated
(red) and uncalibrated (blue) photometric stereo. Highest performance in bold and the second-best in underline. When M is specified, it
means the M number of uniform-sampled OLAT patterns is used for evaluation.

Method Ours Ours SRSH[37] DPIR[II] TIR[I2]
Patterns Multiplexed OLAT OLAT OLAT OLAT
PSNR [dB] 1 37.27 39.33 41.28 34.30 38.20
SSIM T 0.9766 0.9821 0.9895 0.9790 0.9850
MAE [-°]] 23.97 20.94 25.25 41.09 38.38

Table 3. Inverse-rendering evaluation. Our baseline method en-
ables high-quality relighting accuracy in PSNR and SSIM (first
two rows) and normal accuracy in MAE (last row) for both OLAT
and multiplexed patterns. While SRSH enables effective relight-
ing, the normal accuracy is low and non-trivial to support multi-
plexed patterns.

Learned display pattern [10] | Heuristic display pattern |
M=2 M=4 M=10 | () M=2 (b) M=4 (c) M=10
UniPS [26] 277078 25.9408 25.7541 | 65.7171  63.1694  63.4573
SDM-UniPS [27] | 23.5079 19.8946 18.1829 | 42.3576 29.9320  32.0718
DDPS [10] 24.5678 23.3800 29.3716 | 32.0480 35.1451  36.5606

Table 4. Multiplexed patterns with varying numbers. We evalu-
ate normal reconstruction accuracy of photometric stereo methods
using various numbers of heuristic patterns and learned display
patterns.

Learned display pattern [10] |

M=2 M=4 M=10

DDPS [10] (Diffuse +Specular) 24.5678 23.3800 29.3716
DDPS [10] (Diffuse) 23.2807 21.2126 27.7281
SDM-UniPS [27] (Diffuse +Specular)) | 23.5079 19.8946 18.1829
SDM-UniPS [27] (Diffuse) 35.0658 31.2040 30.1058

Table 5. Photometric stereo with diffuse component and vary-
ing number of patterns. We evaluate the impact of using diffuse
images rather than the captured one containing both diffuse and
specular components.

dering methods: one single-view approach [37], two multi-
view methods [11, 12], and our proposed baseline model.
For evaluation, we divide the 144 OLAT images into train-
ing and testing sets with a 5:1 ratio. As shown in Table 3
and Figure 5, our proposed baseline model achieves accu-
rate relighting of specular appearances, whereas other meth-
ods produce blurry relighting results. This demonstrates that
our approach effectively handles the challenges of limited
light-view angular samples, backlight, and near-field ef-
fects, leading to robust display inverse rendering.

Multiplexed Display Patterns for Photometric Stereo
While OLAT images provide sufficient information for
inverse rendering, capturing all 144 OLAT patterns is
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Figure 4. Photometric stereo with OLAT patterns. SDM-
UniPS [27] demonstrates highly accurate normal reconstruction
results, outperforming other methods.

time-consuming. A more efficient approach in display-
camera systems is to use M multiplexed display pat-
terns, formed as linear combinations of the OLAT pat-
terns. We evaluated two multiplexed display pattern strate-
gies: manually-designed and computationally learned pat-
terns from DDPS [10]. As shown in Table 4 and Figure 6,
even with just two multiplexed patterns, accurate normal re-
construction is achievable. Additionally, Table 4 presents
results for the learned “Tri-random (M=2)" [10] and

“Mono-gradient (M=4)" [50] patterns from DDPS, along
with a concatenated pattern (M=10) that integrates these
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Figure 5. Inverse rendering with OLAT patterns. Our proposed baseline method (second column) achieves qualitatively more accurate
relighting and normal reconstruction, outperforming other inverse rendering methods.
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Figure 6. Multiplexed display patterns for photometric stereo.
We found that analytical photometric stereo such as DDPS [10] is
more robust to small number of display patterns than the learning-
based photometric stereo such as SDM-UniPS.

with the “Mono-complementary” pattern [32]. For heuris-
tic patterns, we tested the “Tri-complementary (M=2)" [35]
and “Mono-gradient (M=4)" patterns [50], as well as a
concatenated (M=10) pattern combining them with the
“Mono-complementary” pattern [32]. Our results indicate
that learned patterns consistently outperform heuristic pat-
terns when using the same number of patterns. However,
simply increasing the number of learned patterns does not
always lead to further improvements in performance.

Multiplexed Display Patterns for Inverse Rendering
We evaluate the impact of multiplexed display patterns on
our proposed baseline method for inverse rendering. Table 3
shows the quantitative results and Figure 7 presents the in-
verse rendering results using two patterns, each consisting
of four images: a monochromatic gradient pattern [50] and a

low res. 32-inch

(M=32) (M=50) Default
Woodham [70] 55.973 29.175  23.144
PS-FCN [8] 44.516  40.327 17.286
SDM-UniPS [27] | 14.838 15.716  14.896

Table 6. Impact of display configuration. We found that nor-
mal reconstruction error (MAE) of SDM-UniPS [27] is low for
different display configurations: our original display setup, low-
resolution superpixels, and a 32-inch display size.

learned display pattern [10]. While the relighting results do
not achieve the same accuracy as OLAT’s results, they still
exhibit reasonable performance, with a relighting PSNR of
38.07 and 37.77 dB respectively. These findings suggest
that designing display patterns that enable efficient capture
while enhancing inverse rendering performance remains an
open research challenge.

Impact of using Diffuse Images We evaluate the effect
of incorporating polarization-separated diffuse images un-
der the same set of display patterns in Table 5. As shown
in Table 5, using diffuse images can improve normal recon-
struction accuracy and efficiency in capture by reducing the
number of required input images. However, this improve-
ment is not consistent across all methods, suggesting that
developing reconstruction methods that better use optically-
separated diffuse and specular images is a future direction.

Impact of Display Specifications We evaluate how dif-
ferent display specifications impact inverse rendering per-
formance. Table 6 summarizes normal reconstruction re-
sults under various conditions, including lower-resolution
superpixels and a simulated 32-inch monitor. When using
superpixels smaller than 240x240 pixels to enhance reso-
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Figure 7. Multiplexed display patterns for inverse rendering. Inverse rendering performed with 144 OLAT patterns achieves relight-
ing results that closely approximate the ground truth. Although inverse rendering can be performed using only four heuristic or learned
patterns [10], relighting accuracy remains less accurate than that achieved with OLAT patterns.

lution, the captured images remain too dark even at max-
imum camera exposure, and this is unsuitable for inverse
rendering. Conversely, with 480x480-pixel superpixels ar-
ranged in an 8x4 resolution, the display behaves like an area
light source, causing both the conventional method [70] and
PS-FCN methods to fail in normal reconstruction. How-
ever, SDM-UniPS, which accounts for this type of light-
ing model, maintains relatively stable performance, with
errors comparable to those observed when using 32 pat-
terns. Additionally, when sampling only 10x5 superpix-
els—corresponding to the physical area of a 32-inch dis-
play—the Woodham’s method exhibits predictable perfor-
mance degradation due to a reduced range of incident light
angles, while PS-FCN fails to provide reliable estimates un-
der this configuration. A notable observation in inverse ren-
dering is the impact of removing distant light sources. In a
32-inch display setting, these sources are removed and im-
proves the surface normal MAE of SRSH [37] from 25.25
to 17.68, highlighting the significant role of light attenua-
tion in display-based setups. Furthermore, when the base-
line model does not account for light attenuation, the PSNR
drops from 39.78 to 37.43, confirming the importance of
modeling near-field effects.

7. Conclusion

In this paper, we introduced the first real-world dataset for
display inverse rendering. To construct this dataset, we de-
veloped a display-camera imaging system and carefully cal-

ibrated the display and camera parameters relevant to in-
verse rendering. Using our dataset, we conducted a com-
prehensive evaluation of existing photometric stereo and in-
verse rendering methods within the display-camera config-
uration. Our analysis revealed that current methods require
further advancements, particularly in adapting to diverse
display patterns, achieving robust reflectance reconstruction
under limited light-view angular samples, and leveraging
polarization properties inherent to display-camera setups.
We hope that our dataset will serve as a resource, driving
future developments and evaluations of inverse rendering
methods for display-camera systems.

Future Directions Future work could explore advanced
methods for effectively exploiting separated diffuse-
specular components, as well as methods to handle the chal-
lenges posed by limited light-view angular samples. In ad-
dition, investigating optimized multiplexed display patterns
and their corresponding reconstruction methods presents a
promising avenue for further research. We believe that the
dataset we have proposed will serve as a valuable resource,
accelerating developments in these area.
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